On Comparable Box Dimension

Two boxes in $\mathbb{R}^d$ are comparable if one of them is a subset of a translation of the other one. The comparable box dimension of a graph $G$ is the minimum integer $d$ such that $G$ can be represented as a touching graph of comparable axis-aligned boxes in $\mathbb{R}^d$. We show that proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dvorák, Zdenek, Goncalves, Daniel, Lahiri, Abhiruk, Tan, Jane, Ueckerdt, Torsten
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two boxes in $\mathbb{R}^d$ are comparable if one of them is a subset of a translation of the other one. The comparable box dimension of a graph $G$ is the minimum integer $d$ such that $G$ can be represented as a touching graph of comparable axis-aligned boxes in $\mathbb{R}^d$. We show that proper minor-closed classes have bounded comparable box dimensions and explore further properties of this notion.
DOI:10.5445/ir/1000175598