A Complement Atlas identifies interleukin 6 dependent alternative pathway dysregulation as a key druggable feature of COVID-19
Improvements in COVID-19 treatments, especially for the critically ill, require deeper understanding of the mechanisms driving disease pathology. The complement system is a crucial component of innate host defense, but can also contribute to tissue injury. Although all complement pathways have been...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Improvements in COVID-19 treatments, especially for the critically ill, require deeper understanding of the mechanisms driving disease pathology. The complement system is a crucial component of innate host defense, but can also contribute to tissue injury. Although all complement pathways have been implicated in COVID-19 pathogenesis, the upstream drivers and downstream effects on tissue injury remain poorly defined. We demonstrate that complement activation is primarily mediated by the alternative pathway, and we provide a comprehensive atlas of the complement alterations around the time of respiratory deterioration. Proteomic and single-cell sequencing mapping across cell types and tissues reveals a division of labor between lung epithelial, stromal, and myeloid cells in complement production, in addition to liver-derived factors. We identify IL-6 and STAT1/3 signaling as an upstream driver of complement responses, linking complement dysregulation to approved COVID-19 therapies. Furthermore, an exploratory proteomic study indicates that inhibition of complement C5 decreases epithelial damage and markers of disease severity. Collectively, these results support complement dysregulation as a key druggable feature of COVID-19. |
---|---|
DOI: | 10.5281/zenodo.8192091 |