Human-AI Interaction: Human Behavior Routineness Shapes AI Performance

These are codes for the routineness model and its corresponding data, plus a subset of the anonymized and processed data for the prediction models containing 10.000 users. Data dataset.tar.gz — Data for the routineness model, including 151 .parquet files, each of them containing 1,000 anonymized use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tianao Sun, Kai Zhao, Meng Chen
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:These are codes for the routineness model and its corresponding data, plus a subset of the anonymized and processed data for the prediction models containing 10.000 users. Data dataset.tar.gz — Data for the routineness model, including 151 .parquet files, each of them containing 1,000 anonymized users' hourly behavioural observations. subset_train.csv — A subset of the mobility data for training on prediction models, containing 10,000 anonymized users. subset_test.csv — A subset of the mobility data for testing, containing the same 10,000 anonymized users. Code routineness.stan — A Stan program, that allowed us to measure the weight of the routine/random behaviours of each individual and to calculate their routineness. run.py — A Python file to run the Stan program. Noted that a package, CmdStanPy, must be installed. Under the hood, CmdStanPy uses the CmdStan command line interface to compile and run a Stan program.
DOI:10.5281/zenodo.8118602