Input data and analysis codes for "Reversal of trends in global fine particulate matter air pollution"
This dataset contains Input data and analysis codes used for the following article: Li, C., A. van Donkelaar, M. S. Hammer, E. E. McDuffie, R. T. Burnett, J. V. Spadaro, D. Chatterjee, A. J. Cohen, J. S. Apte, V. A. Southerland, S. C. Anenberg, M. Brauer, & R. V. Martin, Reversal of trends in gl...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This dataset contains Input data and analysis codes used for the following article: Li, C., A. van Donkelaar, M. S. Hammer, E. E. McDuffie, R. T. Burnett, J. V. Spadaro, D. Chatterjee, A. J. Cohen, J. S. Apte, V. A. Southerland, S. C. Anenberg, M. Brauer, & R. V. Martin, Reversal of trends in global fine particulate matter air pollution, submitted, 2023. Input Data Baseline mortality data (204 countries and territories, 17 age groups, 6 diseases, 22 years) Concentration-response functions (GEMM and MRBRT) PM2.5 exposure for 204 territories and 22 years Age-specific population for 204 territories and 22 years Derived Data Age- and disease-specific PM2.5-attributable Mortality estimates for 204 territories and 22 years. Sensitivity of PM2.5-attributable Mortality to marginal PM2.5 reduction for 204 territories and 22 years. Attributable of changes in PM2.5-attributable Mortality (and its sensitivity to marginal PM2.5 reduction) to four driving factors. Code Necessary python scripts to verify and replicate analysis results in the manuscript. |
---|---|
DOI: | 10.5281/zenodo.7618788 |