An Online Automatic Corona Diagnose System Based on Chest X-ray Images

An outbreak of SARS-CoV-2 shocked healthcare systems around the world. It began in December 2019 in Wuhan, China, and spread out in over 120 countries in less than three months. Imaging technologies helped in COVID-19 fast and reliable diagnosis. CT-Scan and X-ray imaging are popular methods. This s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Amini Gougeh, Reza
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An outbreak of SARS-CoV-2 shocked healthcare systems around the world. It began in December 2019 in Wuhan, China, and spread out in over 120 countries in less than three months. Imaging technologies helped in COVID-19 fast and reliable diagnosis. CT-Scan and X-ray imaging are popular methods. This study is focused on X-ray imaging, concerning limitations in small cities to access CT-Scan and its costs. Using deep learning models helps to diagnose precisely and quickly. We aimed to design an online system based on deep learning, which reports lung engagement with the disease, patient status, and therapeutic guidelines. Our objective was to relieve pressure on radiologists and minimize the interval between imaging and diagnosing. VGG19, VGG16, InceptionV3, and ResNet50 were evaluated to be considered as the main code of the online diagnosing system. VGG16, with 98.92% accuracy, achieved the best score. VGG19 performed quite similarly to VGG16. VGG19, InceptionV3 and ResNet50 obtained 98.90, 71.79 and 28.27% subsequently.
DOI:10.5281/zenodo.4043135