PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR LUNG CANCER PREDICTION: A COMPARATIVE STUDY

This study compares the performance of five machine learning algorithms—logistic regression, support vector machines, random forests, gradient boosting, and neural networks—for lung cancer prediction using demographic, lifestyle, and medical data from the UCI Machine Learning Repository. Gradient bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Md Nur Hossain, Nafis Anjum, Murshida Alam, Md Habibur Rahman, Md Siam Taluckder, Md Nad Vi Al Bony, S M Shadul Islam Rishad, Afrin Hoque Jui
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study compares the performance of five machine learning algorithms—logistic regression, support vector machines, random forests, gradient boosting, and neural networks—for lung cancer prediction using demographic, lifestyle, and medical data from the UCI Machine Learning Repository. Gradient boosting and random forests achieved the highest accuracy (89% and 87%, respectively) and AUC-ROC scores (0.93 and 0.92), while neural networks reached 90% accuracy but presented interpretability limitations. Key predictors included smoking history, chronic disease, and respiratory symptoms, aligning with established risk factors. Ensemble methods, particularly gradient boosting and random forests, provided an optimal balance of accuracy and interpretability, highlighting their potential for clinical applications in early lung cancer detection.
ISSN:2767-3774
DOI:10.5281/zenodo.14160192