Plot-Rice v1.0: A global plot-based rice benchmark dataset with spatiotemporal heterogeneity for scientific deep learning

This dataset (Plot-Rice v1.0) offers a global rice benchmark dataset for scientific deep learning at a 10-meter resolution for the year 2023. Plot-Rice v1.0 is constructed based on Sentinel-1 and Sentinel-2 images, encompassing plot-level rice labels and corresponding multi-source feature time serie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ge, Ji, Zhang, Hong, Huang, Wenjiang, Xu, Lu, Xie, Yazhe, Song, Mingyang, Guo, Zihuan, Ding, Yinhaibin, Wang, Chao
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This dataset (Plot-Rice v1.0) offers a global rice benchmark dataset for scientific deep learning at a 10-meter resolution for the year 2023. Plot-Rice v1.0 is constructed based on Sentinel-1 and Sentinel-2 images, encompassing plot-level rice labels and corresponding multi-source feature time series from 20 countries worldwide. It fully considers the spatiotemporal heterogeneity of rice and supports continuous updates, providing a data benchmark for performance comparisons of deep learning models.
DOI:10.5281/zenodo.13897215