SegCODEBRIM

SegCODEBRIM: COncrete DEfect BRidge IMage Dataset for semantic Segmentation of  concrete cracks. The images were taken from the CODEBRIM (https://zenodo.org/records/2620293) dataset and annotated manually.      Dataset is presented and detailed in our WACV 2024 publication: https://arxiv.org/abs/230...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jaziri, Achref, Mundt, Martin, Rodriguez, Andres Fernandez, Ramesh, Visvanathan
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SegCODEBRIM: COncrete DEfect BRidge IMage Dataset for semantic Segmentation of  concrete cracks. The images were taken from the CODEBRIM (https://zenodo.org/records/2620293) dataset and annotated manually.      Dataset is presented and detailed in our WACV 2024 publication: https://arxiv.org/abs/2309.09637v1   . If you make use of the dataset please cite it as follows: "Achref Jaziri, Martin Mundt, Andres Fernandez Rodriguez, Visvanathan Ramesh. Designing a Hybrid Neural System to Learn Real-world Crack Segmentation from Fractal-based Simulation. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024" This GitHub repository presents the code to reproduce the paper results and data loaders: https://github.com/achrefjaziri/SimCrack
DOI:10.5281/zenodo.10071533