PyVIPER: A fast and scalable Python package for rank-based enrichment analysis of single-cell RNASeq data
Data Repository for VIPER analysis in Python. These data are used in Tutorials of the PyVIPER package. All files were generated by post-processing publicly available data from pancreatic ductal adenocarcinoma (PDAC) patients by Peng et al., 2019. The files included are: B-cell-net.tsv: ARACNe3-infer...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Data Repository for VIPER analysis in Python. These data are used in Tutorials of the PyVIPER package. All files were generated by post-processing publicly available data from pancreatic ductal adenocarcinoma (PDAC) patients by Peng et al., 2019.
The files included are:
B-cell-net.tsv: ARACNe3-inferred gene regulatory network for B cells in PDAC
ductal-2-net.tsv: ARACNe3-inferred gene regulatory network for malignant ductal cell type 2 in PDAC
fibroblast-net.tsv: ARACNe3-inferred gene regulatory network for fibroblasts in PDAC
stellate-net.tsv: ARACNe3-inferred gene regulatory network for stellate cells in PDAC
Tutorial_1_gExpr_fibroblast_5802.tsv.gz: gene expression signature calculated for 5802 cells (fibroblasts) used in Tutorial 1
Tutorial_2_counts_mixed_4632.tsv.gz: UMI matrix for 4632 cells from different cellular populations used in Tutorial 2
Tutorial_2_metadata_mixed_4632.tsv.gz: metadata for 4632 cells from different cellular populations used in Tutorial 2
Files in .pkl format are the ARACNe3-inferred gene regulatory networks for the specific cell population in PDAC in .pkl format |
---|---|
DOI: | 10.5281/zenodo.10056138 |