Ecological drivers of carrion beetle (Staphylinidae: Silphinae) diversity on small to large mammals

Silphinae (Staphylinidae; carrion beetles) are important contributors to the efficient decomposition and recycling of carrion necromass. Their community composition is important for the provision of this ecosystem function and can be affected by abiotic and biotic factors. However, investigations ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Büchner, Gwen, Hothorn, Torsten, Feldhaar, Heike, Von Hoermann, Christian, Lackner, Tomas, Rietz, Janine, Schlüter, Jens, Mitesser, Oliver, Benbow, Mark Eric, Heurich, Marco, Müller, Jörg
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silphinae (Staphylinidae; carrion beetles) are important contributors to the efficient decomposition and recycling of carrion necromass. Their community composition is important for the provision of this ecosystem function and can be affected by abiotic and biotic factors. However, investigations are lacking on the effects of carrion characteristics on Silphinae diversity. Carrion body mass may affect Silphinae diversity following the More Individuals Hypothesis (MIH). The MIH predicts a higher number of species at larger carrion because higher numbers of individuals can be supported on the resource patch. Additionally, biotic factors like carrion species identity or decomposition stage, and the abiotic factors elevation, season, and temperature could affect Silphinae diversity. To test the hypotheses, we collected Silphinae throughout the decomposition of 100 carcasses representing ten mammal species ranging from 0.04 kg to 124 kg. Experimental carcasses were exposed in a mountain forest landscape in Germany during the spring and summer of 2021. We analysed Silphinae diversity using recently developed transformation models that considered the difficult data distribution we obtained. We found no consistent effect of carrion body mass on Silphinae species richness and, therefore, rejected the MIH. The carrion decomposition stage, in contrast, strongly influenced Silphinae diversity. Abundance and species richness increased with the decomposition process. Silphinae abundance increased with temperature and decreased with elevation. Furthermore, Silphinae abundance was lower in summer compared to spring, likely due to increased co-occurrence and competition with dipteran larvae in summer. Neither carrion species identity nor any abiotic factor affected Silphinae species richness following a pattern consistent throughout the seasons. Our approach combining a broad study design with an improved method for data analysis, and transformation models, revealed new insights into mechanisms driving carrion beetle diversity during carrion decomposition. Overall, our study illustrates the complexity and multifactorial nature of biotic and abiotic factors affecting diversity.
DOI:10.5061/dryad.xd2547drq