Disturbance amplifies sensitivity of dryland productivity to precipitation variability

Variability of the terrestrial global carbon sink is largely determined by the response of dryland productivity to annual precipitation. Despite extensive disturbance in drylands, how disturbance alters productivity-precipitation relationships remains poorly understood. Using remote-sensing to pair...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Terry, Tyson, Sala, Osvaldo, Ferrenberg, Scott, Reed, Sasha, Osborne, Brooke, Jordan, Samuel, Lee, Steven, Adler, Peter
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Variability of the terrestrial global carbon sink is largely determined by the response of dryland productivity to annual precipitation. Despite extensive disturbance in drylands, how disturbance alters productivity-precipitation relationships remains poorly understood. Using remote-sensing to pair over 5600 km of natural gas pipeline corridors with neighboring undisturbed areas in North American drylands, we found that disturbance reduced average annual production 6-29% and caused up to a five-fold increase in the sensitivity of net primary productivity (NPP) to interannual variation in precipitation. Disturbance impacts were larger and longer-lasting at locations with higher precipitation (>450 mm mean annual precipitation). Disturbance effects on NPP dynamics were mostly explained by shifts from woody to herbaceous vegetation. Severe disturbance will amplify effects of increasing precipitation variability on NPP in drylands.
DOI:10.5061/dryad.tx95x6b49