Data from: Parasite escape through trophic specialization in a species flock

Adaptive radiation occurs when species diversify rapidly to occupy an array of ecological niches. Since opportunities for parasite infection and transmission may greatly vary among these niches, adaptive radiation is expected to be associated with a turnover of the parasite community. As major agent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hablützel, Pascal I., Vanhove, Maarten P.M., Deschepper, Pablo, Grégoir, Arnout F., Roose, Anna K., Volckaert, Filip A.M., Raeymaekers, Joost A.M.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adaptive radiation occurs when species diversify rapidly to occupy an array of ecological niches. Since opportunities for parasite infection and transmission may greatly vary among these niches, adaptive radiation is expected to be associated with a turnover of the parasite community. As major agents of natural and sexual selection, parasites may play a central role in host diversification. The study of parasite turnover may thus be of general relevance and could significantly improve our understanding of adaptive radiation. In the present study, we examined the parasite faunas of eleven species belonging to the tribe Tropheini, one of several adaptive radiations of cichlid fishes in Lake Tanganyika. The most parsimonious ancestral foraging strategy among the Tropheini is relatively unselective substrate browsing of aufwuchs. Several lineages evolved more specialized foraging strategies, such as selective combing of microscopic diatoms or picking of macro-invertebrates. We found that representatives of these specialized lineages bear reduced infection with food-web transmitted acanthocephalan helminths, but not with parasites with a direct life cycle. Possibly, the evolution of selective foraging strategies entailed reduced ingestion of intermediate invertebrate hosts of acanthocephalans. We conclude that some species belonging to the Tropheini virtually escape acanthocephalan infection as a by-product effect of trophic specialization.
DOI:10.5061/dryad.ts679