Data from: Fungal endophytes of Vanilla planifolia across Réunion Island: isolation, distribution and biotransformation

Background The objective of the work was to characterize fungal endophytes from aerial parts of Vanilla planifolia. Also, to establish their biotransformation abilities of flavor-related metabolites. This was done in order to find a potential role of endophytes on vanilla flavors. Results Twenty thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khoyratty, Shahnoo, Dupont, Joëlle, Lacoste, Sandrine, Palama, Tony L., Choi, Young H., Kim, Hye K., Payet, Bertrand, Grisoni, Michel, Fouillaud, Mireille, Verpoorte, Robert, Kodja, Hippolyte
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background The objective of the work was to characterize fungal endophytes from aerial parts of Vanilla planifolia. Also, to establish their biotransformation abilities of flavor-related metabolites. This was done in order to find a potential role of endophytes on vanilla flavors. Results Twenty three MOTUs were obtained, representing 6 fungal classes. Fungi from green pods were cultured on mature green pod based media for 30 days followed by 1H NMR and HPLC-DAD analysis. All fungi from pods consumed metabolized vanilla flavor phenolics. Though Fusarium proliferatum was recovered more often (37.6 % of the isolates), it is Pestalotiopsis microspora (3.0 %) that increased the absolute amounts (quantified by 1H NMR in μmol/g DW green pods) of vanillin (37.0 × 10−3), vanillyl alcohol (100.0 × 10−3), vanillic acid (9.2 × 10−3) and p-hydroxybenzoic acid (87.9 × 10−3) by significant amounts. Conclusions All plants studied contained endophytic fungi and the isolation of the endophytes was conducted from plant organs at nine sites in Réunion Island including under shade house and undergrowth conditions. Endophytic variation occured between cultivation practices and the type of organ. Given the physical proximity of fungi inside pods, endophytic biotransformation may contribute to the complexity of vanilla flavors.
DOI:10.5061/dryad.m5c7m