Data from: Intensive forest harvesting increases susceptibility of northern forest soils to carbon, nitrogen and phosphorus loss
1. Understanding the impact of forest harvesting is critical to sustainable forest management, yet there remains much uncertainty regarding how harvesting affects soil carbon (C), nitrogen (N) and phosphorus (P) dynamics. 2. Here we conducted a global meta-analysis of 808 observations from 49 studie...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1. Understanding the impact of forest harvesting is critical to
sustainable forest management, yet there remains much uncertainty
regarding how harvesting affects soil carbon (C), nitrogen (N) and
phosphorus (P) dynamics. 2. Here we conducted a global meta-analysis of
808 observations from 49 studies to test the effects of harvesting on the
stocks and concentrations of soil C, N, and P and C:N:P ratios relative to
uncut control stands. 3. With all harvesting intensities combined, C stock
was unaffected by harvesting in either the forest floor or mineral soil,
while harvesting reduced forest floor [C], [N], and [P] and C:N ratio,
increased the mineral soil [C] and C:N ratio, but reduced mineral soil N
stock,. The impacts of harvesting on forest floor C and N stocks, C:P and
N:P and mineral soil [C] and [N] changed from no effects by partial,
stem-only and whole-tree harvesting to significantly negative effects by
the harvesting coupled with fire. Stem-only and whole-tree harvesting
similarly reduced forest floor [P]. The negative effects of harvesting
were most pronounced in conifer stands. Soil [C], [N] and C:N decreased
with time since harvesting, but soil [P] did not, resulting in an increase
in forest floor N:P. 4. Synthesis and applications. Our findings highlight
the importance of harvest intensity and rotation length on long-term soil
nutrient availability when managing forests. Furthermore, the lag in [P]
recovery following harvesting may indicate a decoupling of the P cycle
from that of C and N and a potential concern in managed forests. |
---|---|
DOI: | 10.5061/dryad.dd602 |