Random forests for predicting species identity of forensically important blow flies (Diptera: Calliphoridae) and flesh flies (Sarcophagidae) using geometric morphometric data: proof of concept

Wing shape variation has been shown to be useful for delineating forensically important fly species in two Diptera families: Calliphoridae and Sarcophagidae. Compared to DNA-based identification, the cost of geometric morphometric data acquisition and analysis is relatively much lower because the to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khang, Tsung Fei, Mohd Puaad, Nur Ayuni Dayana, Teh, Ser Huy, Mohamed, Zulqarnain
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wing shape variation has been shown to be useful for delineating forensically important fly species in two Diptera families: Calliphoridae and Sarcophagidae. Compared to DNA-based identification, the cost of geometric morphometric data acquisition and analysis is relatively much lower because the tools required are basic, and stable softwares are available. However, to date, an explicit demonstration of using wing geometric morphometric data for species identity prediction in these two families remains lacking. Here, geometric morphometric data from 19 homologous landmarks on the left wing of males from seven species of Calliphoridae (n=55), and eight species of Sarcophagidae (n=40) were obtained and processed using Generalized Procrustes Analysis. Allometric effect was removed by regressing centroid size (in log10) against the Procrustes coordinates. Subsequently, principal component analysis of the allometry-adjusted Procrustes variables was done, with the first 15 principal components used to train a random forests model for species prediction. Using a real test sample consisting of 33 male fly specimens collected around a human corpse at a crime scene, the estimated percentage of concordance between species identities predicted using the random forests model and those inferred using DNA-based identification was about 80.6% (approximate 95% confidence interval = [68.9%, 92.2%]). In contrast, baseline concordance using naive majority class prediction was 36.4%. The results provide proof of concept that geometric morphometric data has good potential to complement morphological and DNA-based identification of blow flies and flesh flies in forensic work. 
DOI:10.5061/dryad.95x69p8hf