Juvenile social experience and practice have a switch-like influence on adult mate preferences in an insect

Social causes of variation in animal communication systems have important evolutionary consequences, including speciation. The relevance of these effects depends on how widespread they are among animals. There is evidence for such effects not only in birds and mammals, but also frogs and some insect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Desjonquères, Camille, Maliszewski, Jak, Rodriguez, Rafael Lucas
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Social causes of variation in animal communication systems have important evolutionary consequences, including speciation. The relevance of these effects depends on how widespread they are among animals. There is evidence for such effects not only in birds and mammals, but also frogs and some insects and spiders. Here we analyse the social ontogeny of adult mate preferences in an insect, Enchenopa treehoppers. In these communal plant-feeding insects, individuals reared in isolation or in groups differ in their mate preferences, and the group-reared phenotype can be rescued by playbacks to isolation-reared individuals. We ask about the relative role of signalling experience and signalling practice during ontogeny on the development of adult mating preferences in Enchenopa females. Taking advantage of variation in the signal experience and signalling practice of isolation-reared individuals, we find switch-like effects for experience and practice on female mate preference phenotypes, with individuals having some experience and practice as juveniles best rescuing the group-reared preference phenotype. We discuss how understanding the nature and distribution of social-ontogenetic causes of variation in mate preferences and other sexual traits will bring new insights into how within- and between-population variation influences the evolution of communication systems.
DOI:10.5061/dryad.6t1g1jwxp