Data from: Temporal dynamics of snowmelt nutrient release from snow–plant residue mixtures: an experimental analysis and mathematical model development

Reducing eutrophication in surface water is a major environmental challenge in many countries around the world. In cold Canadian prairie agricultural regions, part of the eutrophication challenge arises during spring snowmelt when a significant portion of the total annual nutrient export occurs, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Costa, Diogo, Liu, Jian, Roste, Jennifer, Elliott, Jane
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reducing eutrophication in surface water is a major environmental challenge in many countries around the world. In cold Canadian prairie agricultural regions, part of the eutrophication challenge arises during spring snowmelt when a significant portion of the total annual nutrient export occurs, and plant residues can act as a nutrient source instead of a sink. Although the total mass of nutrients released from various crop residues has been studied before, little research has been conducted to capture fine-timescale temporal dynamics of nutrient leaching from plant residues, and the processes have not been represented in water quality models. In this study, we measured the dynamics of P and N release from a cold-hardy perennial plant species, alfalfa (Medicago sativa L.), to meltwater after freeze–thaw through a controlled snowmelt experiment. Various winter conditions were simulated by exposing alfalfa residues to different numbers of freeze–thaw cycles (FTCs) of uniform magnitude prior to snowmelt. The monitored P and N dynamics showed that most nutrients were released during the initial stages of snowmelt (first 5 h) and that the magnitude of nutrient release was affected by the number of FTCs. A threshold of five FTCs was identified for a greater nutrient release, with plant residue contributing between 0.29 (NO3) and 9 (PO4) times more nutrients than snow. The monitored temporal dynamics of nutrient release were used to develop the first process-based predictive model controlled by three potentially measurable parameters that can be integrated into catchment water quality models to improve nutrient transport simulations during snowmelt.
DOI:10.5061/dryad.0k2s39c