Tepee Fire Fuel and Fuel Consumption
Data Overview Mapped attributes: Fuel consumption derived from ALS data Post-fire fuel load derived from ALS data Pre-fire fuel load derived from ALS data Fuel consumption derived from FCCS data Post-fire fuel load derived from FCCS data Pre-fire fuel load derived from FCCS data Supplements: ALS dat...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Data Overview Mapped attributes: Fuel consumption derived from ALS data Post-fire fuel load derived from ALS data Pre-fire fuel load derived from ALS data Fuel consumption derived from FCCS data Post-fire fuel load derived from FCCS data Pre-fire fuel load derived from FCCS data Supplements: ALS data extent Tepee fire perimeter Prior forest fuel treatments Description Landscape scale estimates of pre-fire fuel load and fuel consumption are valuable resources for land managers and scientists. We used multitemporal airborne laser scanning (ALS), combined with field data, to empirically model these variables at fine scales (5 m resolution). We acquired Fuel Characteristic Classification System (FCCS) estimates of fuel load through LANDFIRE (30 m resolution) and estimated fuel consumption using CONSUME in the software program Fuel and Fire Tools (FFT). This data publication contains pre/post fire fuel load and fuel consumption for the 2018 Tepee Fire (Oregon, USA) using each of the ALS and FCCS approaches. We used these data to compare the approaches and to examine the effect of differing spatial resolution. The data may also be used for studying fire behavior, fire effects, and smoke emissions at these fires. Further detail on these data can be found in McCarley et al. 2022. Units The units for all fuel estimates are megagrams per hectare. Negative consumption estimates in the ALS data correspond to vegetation growth. Coordinate Reference System Data is projected in WGS84 UTM Zone 10N (EPSG 32610). |
---|---|
DOI: | 10.48792/w2wc72 |