Climate risk analysis for adaptation planning in Uganda's agricultural sector

Climate change increasingly affects the productivity of Uganda’s agricultural sector, with droughts and precipitation variability challenging livelihoods as well as the economic prospects of entire value chains. The country’s national policies and plans on climate change and agriculture recognise th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: von Loeben, Sophie, Gornott, Christoph, Abigaba, David, Adriko, John, Awori, Eres, Cartsburg, Matti, Chemura, Abel, Cronauer, Carla, Lipka, Naima, Murken, Lisa, Muzafarova, Albina, Noleppa, Steffen, Romanovska, Paula, Tomalka, Julia, Weituschat, Sophia, Zvolsky, Antonia
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change increasingly affects the productivity of Uganda’s agricultural sector, with droughts and precipitation variability challenging livelihoods as well as the economic prospects of entire value chains. The country’s national policies and plans on climate change and agriculture recognise that investing in effective adaptation is key to mitigating climate risks. Yet, limited information on current and projected climate impacts on the different steps of agricultural value chains is available on which sound adaptation decisions can be based. This study aims to address this gap by providing a comprehensive climate risk analysis for two selected agricultural value chains: maize, a major food crop, and coffee (Robusta and Arabica), a major export crop. Based on ten global climate models (GCMs), we project how temperature and precipitation is expected to change under two greenhouse gas (GHG) emissions scenarios (SSP1- RCP2.6 low emissions scenario and SSP3-RCP7.0 high emissions scenario) and how these impacts might affect maize and coffee production. In addition, interviews with key actors involved in post-harvest activities (including aggregation, processing, marketing and distribution) have been conducted, to better understand how climate change affects later stages of the value chains. Based on the projected impact analysis as well as on a participatory process with various stakeholders in Uganda, four adaptation strategies were selected for our analysis: improved maize varieties, improved maize storage, agroforestry systems for coffee production and improved coffee storage. As part of our adaptation analysis, we consider aspects of risk mitigation potential, cost-effectiveness and gender. The results have been complemented and cross-checked by expert- and literature-based assessments and two stakeholder workshops. The results of this climate risk analysis show that, in response to increasing GHG concentrations, temperatures in Uganda will increase by 1.1 °C under the low emissions scenario (SSP1-RCP2.6) and by 1.5 °C under the high emissions scenario (SSP3-RCP7.0) by 2050, compared to 2004. The number of hot days and hot nights are projected to steadily increase, with severe temperature extremes especially in the north of Uganda. The majority of models project slight future increases of annual precipitation, but precipitation projections are subjected to high model uncertainties. Climatic conditions also substantially affect crop production in Uganda
DOI:10.48485/pik.2023.021