Discrete Sobolev-Poincare inequalities for Voronoi finite volume approximations

We prove a discrete Sobolev-Poincare inequality for functions with arbitrary boundary values on Voronoi finite volume meshes. We use Sobolev's integral representation and estimate weakly singular integrals in the context of finite volumes. We establish the result for star shaped polyhedral doma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Glitzky, Annegret, Griepentrog, Jens André
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a discrete Sobolev-Poincare inequality for functions with arbitrary boundary values on Voronoi finite volume meshes. We use Sobolev's integral representation and estimate weakly singular integrals in the context of finite volumes. We establish the result for star shaped polyhedral domains and generalize it to the finite union of overlapping star shaped domains. In the appendix we prove a discrete Poincare inequality for space dimensions greater or equal to two.
ISSN:0946-8633
DOI:10.34657/2223