Multidirectional effect of low-intensity electrical myostimulation on gene expression and phenotype in thigh and calf muscles after one week of disuse - vastus lateralis data
Low-intensity neuromuscular electrical stimulation (NMES) is often used as an alternative to exercise and high-intensity electrical stimulation to prevent the loss of muscle mass, strength, and endurance in spaceflight and in patients with severe chronic diseases. This study assessed the efficiency...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low-intensity neuromuscular electrical stimulation (NMES) is often used as an alternative to exercise and high-intensity electrical stimulation to prevent the loss of muscle mass, strength, and endurance in spaceflight and in patients with severe chronic diseases. This study assessed the efficiency of low-intensity (~10% of maximal voluntary contraction) combined (low- and high-frequency) electrical stimulation in preventing the negative effects of weekly disuse (dry immersion without [DI, see a related dataset GSE271607] and with [DI+NMES] daily stimulation; 10 males in each group) on the strength and aerobic performance of the ankle plantar flexors and knee extensors, mitochondrial function in permeabilized muscle fibers, and the proteomic (quantitative mass spectrometry-based analysis) and transcriptomic (RNA-sequencing) profiles of the soleus muscle and vastus lateralis muscle. Application of electrical stimulation during dry immersion prevented a decrease in the maximal strength and a slight reduction in aerobic performance of knee extensors, as well as a decrease in maximal ADP-stimulated mitochondrial respiration and changes in the expression of genes encoding mitochondrial, extracellular matrix, and membrane proteins in the vastus lateralis muscle. In contrast, for the ankle plantar flexors/soleus muscle, electrical stimulation had a positive effect only on maximal mitochondrial respiration, but accelerated the decline in the maximal strength and muscle fiber cross-sectional area, which appears to be associated with the activation of genes regulating the inflammatory response. The data obtained open up broad prospects for the use of low-intensity combined electrical stimulation to prevent the negative effects of disuse for “mixed” muscles, meanwhile, the optimization of the stimulation protocol is required for “slow” muscles. Only data for vastus lateralis tissue samples are reported here. See OSD-783 for soleus tissue data. |
---|---|
DOI: | 10.26030/pb29-vv83 |