Using Learning to Predict Average Cooperation

We predict cooperation rates across treatments in the experimental play of the indefinitely repeated prisoner’s dilemma using simulations of a simple learning model. We suppose that learning and the game parameters only influence play in the initial round of each supergame. Using data from 17 papers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fudenberg, Drew, Karreskog, Gustav
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We predict cooperation rates across treatments in the experimental play of the indefinitely repeated prisoner’s dilemma using simulations of a simple learning model. We suppose that learning and the game parameters only influence play in the initial round of each supergame. Using data from 17 papers, we find that our model predicts out-of-sample cooperation at least as well as more complicated models with more parameters and harder-to-interpret machine learning algorithms. Our results let us predict how cooperation rates change with longer experimental sessions, and help explain past findings on the role of strategic uncertainty.
DOI:10.25740/rq985nd5994