Longitudinal fan profiles: Supplement 1 from "Alluvial fans " (Thesis)

NOTE: Text or symbols on renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document. Alluvial fans were studied in the field, largely in the desert regions of California, and in the laboratory. Field study consisted of detailed mapping of ages and sizes of debris, channe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hooke, Roger LeBaron
Format: Bild
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:NOTE: Text or symbols on renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document. Alluvial fans were studied in the field, largely in the desert regions of California, and in the laboratory. Field study consisted of detailed mapping of ages and sizes of debris, channel patterns, and deposits of different types on parts of four fans, and reconnaissance work on over 100 additional fans. Reconnaissance generally consisted of outlining the fan, noting material size and channel patterns, and measuring a few slopes. In the laboratory small alluvial fans were built of mud and sand transported through a channel into a five-foot square box under controlled conditions. Material is transported to fans by debris flows or water flows which follow the main channel. This channel is generally incised at the fanhead, because there water is able to transport on a lower slope the material deposited earlier by debris flows. Since the main channel at the fanhead has a lower slope than the adjacent fan surface, it emerges onto the surface near a midfan point herein called the intersection point. On the laboratory fans most deposition above the intersection point is by debris flows that exceed the depth of the incised channel. Fluvial deposition dominates below the intersection point. This is also inferred to be true on natural fans. Fans deficient in fine material may have so high an infiltration rate that even moderately large discharges are completely absorbed before reaching the toe of the fan. Under these conditions the coarse debris in transport is deposited as lobate masses on the fan. In many respects these deposits resemble and may, in the past, have been mistaken for debris-flow deposits. The empirical relationship between fan area, A[subscript f], and drainage-basin area, A[subscript d] = cA[subscript d][superscript n] has been recognized previously (Bull, 1964; Denny, 1965). The present study suggests that this relationship results from a tendency toward a quasi steady-state between coalescing fans in the same lithologic, tectonic, and geographic environment. The quasi steady-state exists when all fans are increasing in thickness at the same rate. If rates differ, the areas of the fans will change to approach a quasi steady-state. The rate of deposition is determined by the influx of debris, which is a function of drainage basin area. The exponent [...] is less than unity because a storm of a given recurrence interval is less likely to
DOI:10.22002/d1.859