Identifying clusters on a discrete periodic lattice via machine learning
Given the ubiquity of lattice models in physics, it is imperative for researchers to possess robust methods for quantifying clusters on the lattice — whether they be Ising spins or clumps of molecules. Inspired by biophysical studies, we present Python code for handling clusters on a 2D periodic lat...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given the ubiquity of lattice models in physics, it is imperative for researchers to possess robust methods for quantifying clusters on the lattice — whether they be Ising spins or clumps of molecules. Inspired by biophysical studies, we present Python code for handling clusters on a 2D periodic lattice. Properties of individual clusters, such as their area, can be obtained with a few function calls. Our code invokes an unsupervised machine learning method called hierarchical clustering, which is simultaneously effective for the present problem and simple enough for non-experts to grasp qualitatively. Moreover, our code transparently merges clusters neighboring each other across periodic boundaries using breadth-first search (BFS), an algorithm well-documented in computer science pedagogy. The fact that our code is written in Python – instead of proprietary languages – further enhances its value for reproducible science. |
---|---|
DOI: | 10.17632/w7rcv4tbtn.1 |