Python code for the estimation of missing prices in real-estate market with a dataset of house prices from Teruel city

This research data file contains the necessary software and the dataset for estimating the missing prices of house units. This approach combines several machine learning techniques (linear regression, support vector regression, the k-nearest neighbors and a multi-layer perceptron neural network) wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: García-Magariño, Iván
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research data file contains the necessary software and the dataset for estimating the missing prices of house units. This approach combines several machine learning techniques (linear regression, support vector regression, the k-nearest neighbors and a multi-layer perceptron neural network) with several dimensionality reduction techniques (non-negative factorization, recursive feature elimination and feature selection with a variance threshold). It includes the input dataset formed with the available house prices in two neighborhoods of Teruel city (Spain) in November 13, 2017 from Idealista website. These two neighborhoods are the center of the city and “Ensanche”. This dataset supports the research of the authors in the improvement of the setup of agent-based simulations about real-estate market. The work about this dataset has been submitted for consideration for publication to a scientific journal. The open source python code is composed of all the files with the “.py” extension. The main program can be executed from the “main.py” file. The “boxplotErrors.eps” is a chart generated from the execution of the code, and compares the results of the different combinations of machine learning techniques and dimensionality reduction methods. The dataset is in the “data” folder. The input raw data of the house prices are in the “dataRaw.csv” file. These were shuffled into the “dataShuffled.csv” file. We used cross-validation to obtain the estimations of house prices. The outputted estimations alongside the real values are stored in different files of the “data” folder, in which each filename is composed by the machine learning technique abbreviation and the dimensionality reduction method abbreviation.
DOI:10.17632/mxpgf54czz.2