Data for: Ferromagnetic and FMR properties of the YIG/TiO2/PZT structures obtained by ion-beam sputtering
Fig. 1. Cross-section of the original ceramic PbZr0.45Ti0.55O3 sample. Fig. 2. Typical view of the YIG (2 µm) /TiO2 (0.2 µm) /PZT (400 µm) sample in the cross-sectional area (a), as well as a YIG surface part (b), made on a smaller scale. Fig. 3. X-ray diffraction pattern of the Y3Fe5O12 (2 m) /TiO...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fig. 1. Cross-section of the original ceramic PbZr0.45Ti0.55O3 sample. Fig. 2. Typical view of the YIG (2 µm) /TiO2 (0.2 µm) /PZT (400 µm) sample in the cross-sectional area (a), as well as a YIG surface part (b), made on a smaller scale. Fig. 3. X-ray diffraction pattern of the Y3Fe5O12 (2 m) /TiO2 (0.2 m) /PZT (400 m) heterostructure. X-rays are directed to the Y3Fe5O12 layer. Fig. 4. AFM profile (a) along the horizontal line at (b). AFM (b) and MFM (c) images of the surface of the YIG/TiO2/PZT structure in the saturation state. The color scale on the right in the figure 4 c is plotted in relative units. Fig. 5. Magnetic-field dependence of the YIG (2 μm) /TiO2 (0.2 μm) /PZT (400 μm) structure in a parallel (1) and perpendicular (2) configuration of the external magnetic field and the plane of the layer. Measurements were taken at 300 K. The insert is the same on a larger scale. Fig. 6. FMR curves of the YIG (2 μm) /TiO2 (0.2 μm) /PZT (400 μm) structure samples in a resonant magnetic field parallel (a) and perpendicular (b) to the plane of the layer. Measurements were taken of four parts of the same sample. H is the resonance absorption line width. |
---|---|
DOI: | 10.17632/gzxrbk8nsp.1 |