Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution

Data for manuscript, entitled: "Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution" (1) python scripts developed for the ShengBTE/MLIP interface, (2) a guide for passive training of MTPs using the MLIP packag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mortazavi, Bohayra
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data for manuscript, entitled: "Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution" (1) python scripts developed for the ShengBTE/MLIP interface, (2) a guide for passive training of MTPs using the MLIP package, (3) examples of VASP input scripts for the AIMD simulations, (4) samples of untrained MTPs, (5) ShengBTE input files for all the considered examples along with the numerical procedure to extract the anharmonic force constants for every example using the trained MTPs.
DOI:10.17632/fmkvzbk3nt