Supplemental Online Content - Development and validation of a deep learning model for improving detection of non-melanoma skin carcinomas treated with Mohs micrographic surgery
Supplemental Online Content sTable 1. CLEAR Derm statement. sTable 2. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement. sFigure 3. Convolutional Neural Network Image Classification with a Deep Learning Model Architecture. sFigure 4. E...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supplemental Online Content
sTable 1. CLEAR Derm statement.
sTable 2. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement.
sFigure 3. Convolutional Neural Network Image Classification with a Deep Learning Model Architecture.
sFigure 4. Evaluation of Model Performance for Lesion Detection in Mohs frozen section Images.
sFigure 5. Evaluation of concordance in pathology review.
sTable 6. Evaluation of leave-one-out cross-validation for patient-level performance in the development cohort.
sTable 7. Performance of prediction models in temporal validation cohort stratified by BCC subtypes. |
---|---|
DOI: | 10.17632/fh7sk5ksmk.2 |