Data set and Python language for curve fitting the elliptical shape

This data set contains the digitization of bamboo culm's and log's circumference that resemble an ellipse and a circle. The data was adjusted, transformed into polar coordinates, and curve fitted using non linear regression. The Phyton coding to curve this ellipse are also generated. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Effendi Tri Bahtiar
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This data set contains the digitization of bamboo culm's and log's circumference that resemble an ellipse and a circle. The data was adjusted, transformed into polar coordinates, and curve fitted using non linear regression. The Phyton coding to curve this ellipse are also generated. In this version we revised the Phyton code: # calculate r_estimate using the curve model def r_estimate(row): numer = estimate["R"] * ((estimate["a"] ** 2 - estimate["b"] ** 2) * np.sin(row["theta"] + estimate["k"] * np.pi) * np.sin(estimate["T"] + estimate["k"] * np.pi) + estimate["b"] ** 2 * np.cos(row["theta"] - estimate["T"])) + estimate["a"] * estimate["b"] * \ ((estimate["a"] ** 2 - estimate["b"] ** 2) * (np.sin(row["theta"] + estimate["k"] * np.pi) ** 2) + estimate["b"] ** 2 - estimate["R"] ** 2 * (np.sin(row["theta"] - estimate["T"]) ** 2)) ** 0.5 denom = (estimate["a"] ** 2 - estimate["b"] ** 2) * (np.sin(row["theta"] + estimate["k"] * np.pi) ** 2) + estimate["b"] ** 2
DOI:10.17632/c83yb2fgmr.2