dataset-Addressing Maximization Bias in Adaptive Differential Evolution

This data set reports the result of proposed Double Q-learning inspired Differential Evolution Algorithm on the CEC 2021 benchmark test suite. The CEC 2021 benchmark test suite contains 10 benchmark problems of 10 and 20 dimensions with five different parametric configurations, offering a total of 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bajpai, Prathu, Bansal, Jagdish Chand
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This data set reports the result of proposed Double Q-learning inspired Differential Evolution Algorithm on the CEC 2021 benchmark test suite. The CEC 2021 benchmark test suite contains 10 benchmark problems of 10 and 20 dimensions with five different parametric configurations, offering a total of 100 problem instances. Ten result tables A1-A10 report the mean and best values of each function on each parametric configuration. The obtained results are compared with other state-of-the-art adaptive DE variants to compare the performance of the proposed DQLiDE algorithm.
DOI:10.17632/8sw4d8xtsx.1