Dataset on the enthalpy of mixing in binary liquids

This dataset contains: (1) "Dataset" folder - Data on the enthalpy of mixing collected in 375 binary liquids from Calphad modeling in composition domains where the models are supported by experimental measurements. Metadata ("Metadata.csv") and explanation of the data quality ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Deffrennes, Guillaume, Hallstedt, Bengt, Abe, Taichi, Bizot, Quentin, Fischer, Evelyne, Joubert, Jean-Marc, Terayama, Group, Tamura, Ryo
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This dataset contains: (1) "Dataset" folder - Data on the enthalpy of mixing collected in 375 binary liquids from Calphad modeling in composition domains where the models are supported by experimental measurements. Metadata ("Metadata.csv") and explanation of the data quality ranking ("Readme_Metadata.txt") are given in the root folder. (2) "Predictions" folder - Machine learning predictions of this property given as Redlich-Kister polynomials in the 2415 binary systems generated by 70 elements. The predictions are also compared with those of the Miedema model in tables and figures where data are also plotted when available. For more information and to use this dataset, please refer to this publication: G. Deffrennes, B. Hallstedt, T. Abe, Q. Bizot, E. Fischer, J-M. Joubert, K. Terayama, and R. Tamura, Data-driven study of the enthalpy of mixing in the liquid phase, Calphad 87 (2024) 102745, https://doi.org/10.1016/j.calphad.2024.102745
DOI:10.17632/6wt6t9kswt