ElectroCom61: A Multiclass Dataset for Detection of Electronic Components

The "ElectroCom61" dataset contains 2071 annotated images of electronic components sourced from the Electronic Lab Support Room, the United International University (UIU). This dataset was specifically designed to facilitate the development and validation of machine learning models for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Faiyaz, Md Faiyaz Abdullah Sayeedi
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The "ElectroCom61" dataset contains 2071 annotated images of electronic components sourced from the Electronic Lab Support Room, the United International University (UIU). This dataset was specifically designed to facilitate the development and validation of machine learning models for the real-time detection of electronic components. To mimic real-world scenarios and enhance the robustness of models trained on this data, images were captured under varied lighting conditions and against diverse backgrounds. Each electronic component was photographed from multiple angles, and following collection, images were standardized through auto-orientation and resized to 640x640 pixels, introducing some degree of stretching. The dataset is organized into 61 distinct classes of commonly used electronic components. The dataset were split into training (70%), validation (20%), and test (10%) sets.
DOI:10.17632/6scy6h8sjz.1