Multi-instance vehicle dataset with annotations captured in outdoor diverse settings
We collected and annotated a dataset containing 105,544 annotated vehicle instances from 24700 image frames within seven different videos, sourced online under creative commons license. The video frames are annotated using DarkLabel tool. In the interest of reusability and generalisation of the deep...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We collected and annotated a dataset containing 105,544 annotated vehicle instances from 24700 image frames within seven different videos, sourced online under creative commons license. The video frames are annotated using DarkLabel tool. In the interest of reusability and generalisation of the deep learning model, we consider the diversity within the collected dataset. This diversity includes changes of lighting amongst the video, as well as other factors such as weather conditions, angle of observation, varying speed of the moving vehicles, traffic flow, and road conditions etc. The videos collected obviously include stationary vehicles, to perform the validation of stopped vehicle detection method. It can be noticed that the road conditions (e.g., motorways, city, country roads), directions, data capture timings and camera views, vary in the dataset producing annotated dataset with diversity. the dataset may have several uses such as vehicle detection, vehicle identification, stopped vehicle detection on smart motorways and local roads (smart city applications) and many more. |
---|---|
DOI: | 10.17632/5d8k5bkb93 |