Saproxylic Fungal Communities in Boreal Forest, Finland, Oulanka, 2022-2023
This work elucidates succession patterns of saproxylic fungi in undisturbed boreal forests, exploring how environment and forest management practices influence fungal diversity in decaying wood. Leveraging the MycoPins method (Shumskaya, 2023), sterilized wooden pins were placed in the topsoil layer...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work elucidates succession patterns of saproxylic fungi in undisturbed boreal forests, exploring how environment and forest management practices influence fungal diversity in decaying wood. Leveraging the MycoPins method (Shumskaya, 2023), sterilized wooden pins were placed in the topsoil layer and allowed to decay with subsequent periodic extraction; fungal colonization was monitored across four different forest ecosystems in Finland during 2022-2023. MycoPins were placed at four transects: conifer forest with access of reindeer (transect A), conifer forest without access of reindeer (transect B), a broadleaf forest accessed to tourists (transect C), and a swamp (transect D). Reindeer is a keystone species in boreal forests which defines biodiversity of major ecosystems. Cladonia sp. is a lichen that is heavily consumed by reindeer and is in abundance in a protected forest, while almost absent in unprotected forests. Hence, reindeer grazing might have a significant impact on forest microbiome. Our research is designed to test several hypotheses: 1). Succession of species is present in fungal communities in deadwood as communities change with progression of decay. 2). Biodiversity of saproxylic fungal guilds is different across different biotopes. 3). Fungal communities differ in hardwood (Angiosperms, broadleaf) vs softwood (Gymnosperms, conifers).
Events are identified by an event ID which is composed of the transect identifier and a sample number. Each event ID is associated with a parent event ID which is composed of a transect identifier and the date when the event occurred (collection date). Occurrences, associated with an event, are identified by an occurrence ID which is composed of an event ID and a GBIF usage key of a fungal species.
For example, the event A_018561C pertains to a MycoPin identified by 018561C in transect A. The parent event id A_2022_Jul_01 refers to a pin collection of transect A that occurred on July 1, 2022. The occurrence id A_018561C:2613081 represents the Hormonema macrosporum Voronin (GBIF usage key: 2613081) in relation to the event A_018561C.
This dataset is in development. It contains data on transect A and transect C. Observations from transects B and D will be uploaded in the following updates. |
---|---|
DOI: | 10.15468/yfemwn |