Geological 3D model of the Po Basin
The geological 3D model of the Po Basin includes the geometry of four stratigraphic horizons (top or unconformity) bounding lithological homogeneous successions of sedimentary units, in the Triassic - Pleistocene time interval, and 179 fault geometries. Each stratigraphic horizon is supplemented by...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The geological 3D model of the Po Basin includes the geometry of four stratigraphic horizons (top or unconformity) bounding lithological homogeneous successions of sedimentary units, in the Triassic - Pleistocene time interval, and 179 fault geometries. Each stratigraphic horizon is supplemented by its isobaths. Where possible, the thickness of the succession above or below, respectively for basal unconformity and top, is provided with the surface depth. The lithology, event process, and age of each sedimentary succession are also provided. Each fault, with its upper tip line, is supplemented with the kinematic, mean values for strike, dip azimuth, and dip derived from the 3D surface geometry, and the age of the oldest and youngest faulted or deformed stratigraphic horizon, if obtainable from the 3D geological model. This harmonized dataset and the related data model were obtained in the framework of the GO-PEG project, co-funded by the Connecting Europe Facility (CEF) of the European Commission. More specifically, this dataset is the output of the Go-Depth use case aiming to provide a methodology and a model to conceptualize, organize and deliver easy-to-use, high-quality, interoperable subsurface information for sustainable planning and use of natural resources. To this aim the data coming from European-funded projects GeoMol (Alpine Space Programme 2012-2015) and GeoERA HotLime (Horizon 2020, 2018-2021) has been used. In view of data interoperability, the data model has been developed as an extension of the INSPIRE Geology data model. The dataset is served through APIs conforming to the OGC API - Feature standard and it is also downloadable in GeoPackage format, anticipating the application of the principles established by the Open Data Directive (Directive (EU) 2019/1024) regarding the sharing of the High-Value Datasets. We acknowledge the listed researchers who contributed seismic and geological data interpretation to the GeoMol and HotLime Project. |
---|---|
DOI: | 10.15161/oar.it/76873 |