Loss of ultracold RbCs molecules via optical excitation of long-lived two-body collision complexes [dataset]
We show that the lifetime of ultracold ground-state $^{87}$Rb$^{133}$Cs molecules in an optical trap is limited by fast optical excitation of long-lived two-body collision complexes. We partially suppress this loss mechanism by applying square-wave modulation to the trap intensity, such that the mol...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the lifetime of ultracold ground-state $^{87}$Rb$^{133}$Cs molecules in an optical trap is limited by fast optical excitation of long-lived two-body collision complexes. We partially suppress this loss mechanism by applying square-wave modulation to the trap intensity, such that the molecules spend 75% of each modulation cycle in the dark. By varying the modulation frequency, we show that the lifetime of the collision complex is $0.53\pm0.06$ ms in the dark. We find that the rate of optical excitation of the collision complex is $3^{+4}_{-2}\times10^{3}$ W$^{-1}$ cm$^2$ s$^{-1}$ for $\lambda = 1550$ nm, leading to a lifetime of |
---|---|
DOI: | 10.15128/r2j9602061h |