A projection-based formulation of the Implicit Function Theorem and its application to time-varying manifolds
In this paper, we derive a projection-based formulation of the Implicit Function Theorem. We give conditions, when an algebraic, time-parameterized equation G(t,x) = 0 is solvable for components P^c x that are selected by a projection P^c and we derive an implicit function g that specializes P^c x i...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we derive a projection-based formulation of the Implicit Function Theorem. We give conditions, when an algebraic, time-parameterized equation G(t,x) = 0 is solvable for components P^c x that are selected by a projection P^c and we derive an implicit function g that specializes P^c x in terms of the complementary components P x, where P = I - P^c. We apply this result to construct a projection-based parametric description of time-varying submanifolds and to generalize the concept of projections to these sets. We illustrate our results by several examples. The results are motivated by the positivity analysis of differential-algebraic equations (DAEs). These are implicit systems F(t,x,\dot x)=0 whose solutions x are supposed to remain componentwise nonnegative whenever the initial value is nonnegative. To entangle the differential and algebraic components in F(t,x,\dot x)=0 without changing the coordinate system, we pursue the presented projection-based solution of implicit algebraic equations. |
---|---|
ISSN: | 2197-8085 |
DOI: | 10.14279/depositonce-14586 |