Ultrafast transient liquid assisted growth of high current density superconducting films

The achievement of high growth rates in YBaCuO epitaxial high-temperature superconducting films has become strategic to enable high-throughput manufacturing of long length coated conductors for energy and large magnet applications. We report on a transient liquid assisted growth process capable of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Soler Bru, Laia, Jareño, J, Banchewski, Juri, Rasi, Silvia, Chamorro, Natalia, Guzmán Aluja, Roger, Yáñez López, Ramón, Mocuta, C, Ricart, S, Farjas, Jordi, Roura-Grabulosa, P, Obradors, X, Puig i Molina, Mª Teresa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The achievement of high growth rates in YBaCuO epitaxial high-temperature superconducting films has become strategic to enable high-throughput manufacturing of long length coated conductors for energy and large magnet applications. We report on a transient liquid assisted growth process capable of achieving ultrafast growth rates (100 nm s −1) and high critical current densities (5 MA cm −2 at 77 K). This is based on the kinetic preference of Ba-Cu-O to form transient liquids prior to crystalline thermodynamic equilibrium phases, and as such is a non-equilibrium approach. The transient liquid-assisted growth process is combined with chemical solution deposition, proposing a scalable method for superconducting tapes manufacturing. Additionally, using colloidal solutions, the growth process is extended towards fabrication of nanocomposite films for enhanced superconducting properties at high magnetic fields. Fast acquisition in situ synchrotron X-ray diffraction and high resolution scanning transmission electron microscopy (STEM) become crucial measurements in disentangling key aspects of the growth process. High throughput manufacturing of long length coated conductors requires fast epitaxial growth of high-temperature superconducting films. Here, Soler et al. report an ultrafast growth rates and high critical current densities of YBaCuO films using a transient liquid-assisted growth method.