Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes

Second generation ethanol is produced from the carbohydrates released from the cell wall of bagasse and straw of sugarcane. The objective of this work is the characterization and application of a voltammetric electronic tongue using an array of glassy carbon electrodes modified with multi-walled car...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cardoso de Sá, Acelino, González-Calabuig, Andreu, Cipri, Andrea, Ramos Stradiotto, Nelson, Valle Zafra, Manuel del
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Second generation ethanol is produced from the carbohydrates released from the cell wall of bagasse and straw of sugarcane. The objective of this work is the characterization and application of a voltammetric electronic tongue using an array of glassy carbon electrodes modified with multi-walled carbon nanotubes containing metal (Paladium, Gold, Copper, Nickel and Cobalt) oxy-hydroxide nanoparticles (GCE/MWCNT/MetalsOOH) towards a simpler analysis of carbohydrates (glucose, xylose, galactose and mannose). The final architecture of the back-propagation Artificial Neural Network (ANN) model had 36 input neurons and a hidden layer with 5 neurons. The ANN based prediction model has provided satisfactory concentrations for all carbohydrates; the obtained response had a maximum NRMSE of 12.4% with a maximum deviation of slopes in the obtained vs. expected comparison graph of 15%. For all species, the comparison correlation coefficient was of r ≥ 0.99 for the training subset and of r ≥ 0.96 for the test subset.