Convergence of an entropic semi-discretization for nonlinear Fokker-Planck equations in Rd

A nonlinear degenerate Fokker-Planck equation in the whole space is analyzed. The existence of solutions to the corresponding implicit Euler scheme is proved, and it is shown that the semi-discrete solution converges to a solution of the continuous problem. Furthermore, the discrete entropy decays m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Carrillo de la Plata, José Antonio, Gualdani, Maria P, Jüngel, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A nonlinear degenerate Fokker-Planck equation in the whole space is analyzed. The existence of solutions to the corresponding implicit Euler scheme is proved, and it is shown that the semi-discrete solution converges to a solution of the continuous problem. Furthermore, the discrete entropy decays monotonically in time and the solution to the continuous problem is unique. The nonlinearity is assumed to be of porous-medium type. For the (given) potential, either a less than quadratic growth condition at infinity is supposed or the initial datum is assumed to be compactly supported. The existence proof is based on regularization and maximum principle arguments. Upper bounds for the tail behavior in space at infinity are also derived in the at-most-quadratic growth case.