On the performance of STDMA Link Scheduling and Switched Beamforming Antennas in Wireless Mesh Networks
Projecte final de carrera realitzat en col.laboració amb King's College London Wireless Mesh Networks (WMNs) aim to revolutionize Internet connectivity due to its high throughput, cost-e ectiveness and ease deployment by providing last mile connectivity and/or backhaul support to di erent cellu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Projecte final de carrera realitzat en col.laboració amb King's College London
Wireless Mesh Networks (WMNs) aim to revolutionize Internet connectivity due to
its high throughput, cost-e ectiveness and ease deployment by providing last mile
connectivity and/or backhaul support to di erent cellular networks. In order not to
jeopardize their successful deployment, several key issues must be investigated and
overcome to fully realize its potential. For WMNs that utilize Spatial Reuse TDMA
as the medium access control, link scheduling still requires further enhancements.
The rst main contribution of this thesis is a fast randomized parallel link swap
based packing (RSP) algorithm for timeslot allocation in a spatial time division multiple
access (STDMA) wireless mesh network. The proposed randomized algorithm
extends several greedy scheduling algorithms that utilize the physical interference
model by applying a local search that leads to a substantial improvement in the
spatial timeslot reuse. Numerical simulations reveal that compared to previously
scheduling schemes the proposed randomized algorithm can achieve a performance
gain of up to 11%. A signi cant bene t of the proposed scheme is that the computations
can be parallelized and therefore can e ciently utilize commoditized and
emerging multi-core and/or multi-CPU processors.
Furthermore, the use of selectable multi-beam directional antennas in WMNs,
such as beam switched phase array antennas, can assist to signi cantly enhance
the overall reuse of timeslots by reducing interference levels across the network and
thereby increasing the spectral e ciency of the system. To perform though a switch
on the antenna beam it may require up to 0.25 ms in practical deployed networks,
while at the same time very frequent beam switchings can a ect frame acquisition
and overall reliability of the deployed mesh network.
The second key contribution of this thesis is a set of algorithms that minimize the
overall number of required beam switchings in the mesh network without penalizing
the spatial reuse of timeslots, i.e., keeping the same overall frame length in the
network. Numerical investigations reveal that the proposed set of algorithms can
reduce the number of beam switchings by almost 90% without a ecting the frame
length of the network. |
---|