Periods of Modular GL2-type Abelian Varieties and p-adic Integration
Let F be a number field and an integral ideal. Let f be a modular newform over F of level with rational Fourier coefficients. Under certain additional conditions, Guitart and colleagues [Guitart et al. 16[Guitart et al. 16] X. Guitart, M. Masdeu, and M. Haluk Şengün. "Uniformization of Modular...
Gespeichert in:
Veröffentlicht in: | Experimental mathematics 2017-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let F be a number field and an integral ideal. Let f be a modular newform over F of level with rational Fourier coefficients. Under certain additional conditions, Guitart and colleagues [Guitart et al. 16[Guitart et al. 16] X. Guitart, M. Masdeu, and M. Haluk Şengün. "Uniformization of Modular Elliptic Curves via p-adic Periods." J. Algebra 445 (2016), 458-502. MR 3418066 [Crossref], [Web of Science ®] , [Google Scholar] ] constructed a p-adic lattice which is conjectured to be the Tate lattice of an elliptic curve Ef whose L-function equals that of f. The aim of this note is to generalize this construction when the Hecke eigenvalues of f generate a number field of degree d ⩾ 1, in which case the geometric object associated with f is expected to be, in general, an abelian variety Af of dimension d. We also provide numerical evidence supporting the conjectural construction in the case of abelian surfaces. |
---|---|
ISSN: | 1058-6458 |