Monads on projective varieties
We generalize Fløystad's theorem on the existence of monads on projectivespace to a larger set of projective varieties. We consider a varietyX, a linebundleLonX, and a basepoint-free linear system of sections ofLgiving amorphism to projective space whose image is either arithmetically Cohen-Mac...
Gespeichert in:
Veröffentlicht in: | Pacific journal of mathematics 2018-05, Vol.296 (1), p.155-180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 1 |
container_start_page | 155 |
container_title | Pacific journal of mathematics |
container_volume | 296 |
creator | Marchesi, Simone Macias Marques, Pedro Soares, Helena |
description | We generalize Fløystad's theorem on the existence of monads on projectivespace to a larger set of projective varieties. We consider a varietyX, a linebundleLonX, and a basepoint-free linear system of sections ofLgiving amorphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM) or linearly normal and not contained in a quadric. Wegive necessary and sufficient conditions on integersa,bandcfor a monadof type $mathbf{0} rightarrowleft(boldsymbol{L}^{vee}right)^{a} rightarrow mathcal{O}_{X}^{b} rightarrow boldsymbol{L}^{c} rightarrow mathbf{0}$ to exist. We show that under certain conditions there exists a monad whosecohomology sheaf is simple. We furthermore characterize low-rank vectorbundles that are the cohomology sheaf of some monad as above.Finally, we obtain an irreducible family of monads over projective spaceand make a description on how the same method could be used on an ACMsmooth projective varietyX. We establish the existence of a coarse modulispace of low-rank vector bundles over an odd-dimensionalXand show thatin one case this moduli space is irreducible. |
doi_str_mv | 10.2140/pjm.2018.296.155 |
format | Article |
fullrecord | <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_363618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_363618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-a51591de7286a797569ae0bb016c795a8f340e38fcfb41bc46d83f45a2ec2ef03</originalsourceid><addsrcrecordid>eNpN0E1Lw0AQBuBFFKzVuyfJH0ic2e8cpagVKl70vGw2s5Bgm7AbC_57EyzoYZh5D-8cHsZuESqOEu7Hfl9xQFvxWleo1BlbAQgorRFw_u--ZFc59wAoLTcrdvc6HHybi-FQjGnoKUzdkYqjTx1NHeVrdhH9Z6ab016zj6fH98223L09v2wedmUQSkylV6hqbMlwq72pjdK1J2gaQB1MrbyNQgIJG0NsJDZB6taKKJXnFDhFEGuGv39D_gouUaAU_OQG3_2FZTgY7oQWGu3cgVMnDTknim5M3d6nb4fgFhM3m7jFxM0mbjYRP2CYVAM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monads on projective varieties</title><source>Recercat</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Mathematical Sciences Publishers</source><creator>Marchesi, Simone ; Macias Marques, Pedro ; Soares, Helena</creator><creatorcontrib>Marchesi, Simone ; Macias Marques, Pedro ; Soares, Helena</creatorcontrib><description>We generalize Fløystad's theorem on the existence of monads on projectivespace to a larger set of projective varieties. We consider a varietyX, a linebundleLonX, and a basepoint-free linear system of sections ofLgiving amorphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM) or linearly normal and not contained in a quadric. Wegive necessary and sufficient conditions on integersa,bandcfor a monadof type $mathbf{0} rightarrowleft(boldsymbol{L}^{vee}right)^{a} rightarrow mathcal{O}_{X}^{b} rightarrow boldsymbol{L}^{c} rightarrow mathbf{0}$ to exist. We show that under certain conditions there exists a monad whosecohomology sheaf is simple. We furthermore characterize low-rank vectorbundles that are the cohomology sheaf of some monad as above.Finally, we obtain an irreducible family of monads over projective spaceand make a description on how the same method could be used on an ACMsmooth projective varietyX. We establish the existence of a coarse modulispace of low-rank vector bundles over an odd-dimensionalXand show thatin one case this moduli space is irreducible.</description><identifier>ISSN: 0030-8730</identifier><identifier>EISSN: 0030-8730</identifier><identifier>DOI: 10.2140/pjm.2018.296.155</identifier><language>eng</language><publisher>Mathematical Sciences Publishers (MSP)</publisher><subject>Algebraic geometry ; Algebraic varieties ; Geometria algebraica ; Varietats algebraiques</subject><ispartof>Pacific journal of mathematics, 2018-05, Vol.296 (1), p.155-180</ispartof><rights>(c) Mathematical Sciences Publishers (MSP), 2018 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-a51591de7286a797569ae0bb016c795a8f340e38fcfb41bc46d83f45a2ec2ef03</citedby><cites>FETCH-LOGICAL-c353t-a51591de7286a797569ae0bb016c795a8f340e38fcfb41bc46d83f45a2ec2ef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3941,26951,27901,27902</link.rule.ids></links><search><creatorcontrib>Marchesi, Simone</creatorcontrib><creatorcontrib>Macias Marques, Pedro</creatorcontrib><creatorcontrib>Soares, Helena</creatorcontrib><title>Monads on projective varieties</title><title>Pacific journal of mathematics</title><description>We generalize Fløystad's theorem on the existence of monads on projectivespace to a larger set of projective varieties. We consider a varietyX, a linebundleLonX, and a basepoint-free linear system of sections ofLgiving amorphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM) or linearly normal and not contained in a quadric. Wegive necessary and sufficient conditions on integersa,bandcfor a monadof type $mathbf{0} rightarrowleft(boldsymbol{L}^{vee}right)^{a} rightarrow mathcal{O}_{X}^{b} rightarrow boldsymbol{L}^{c} rightarrow mathbf{0}$ to exist. We show that under certain conditions there exists a monad whosecohomology sheaf is simple. We furthermore characterize low-rank vectorbundles that are the cohomology sheaf of some monad as above.Finally, we obtain an irreducible family of monads over projective spaceand make a description on how the same method could be used on an ACMsmooth projective varietyX. We establish the existence of a coarse modulispace of low-rank vector bundles over an odd-dimensionalXand show thatin one case this moduli space is irreducible.</description><subject>Algebraic geometry</subject><subject>Algebraic varieties</subject><subject>Geometria algebraica</subject><subject>Varietats algebraiques</subject><issn>0030-8730</issn><issn>0030-8730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNpN0E1Lw0AQBuBFFKzVuyfJH0ic2e8cpagVKl70vGw2s5Bgm7AbC_57EyzoYZh5D-8cHsZuESqOEu7Hfl9xQFvxWleo1BlbAQgorRFw_u--ZFc59wAoLTcrdvc6HHybi-FQjGnoKUzdkYqjTx1NHeVrdhH9Z6ab016zj6fH98223L09v2wedmUQSkylV6hqbMlwq72pjdK1J2gaQB1MrbyNQgIJG0NsJDZB6taKKJXnFDhFEGuGv39D_gouUaAU_OQG3_2FZTgY7oQWGu3cgVMnDTknim5M3d6nb4fgFhM3m7jFxM0mbjYRP2CYVAM</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Marchesi, Simone</creator><creator>Macias Marques, Pedro</creator><creator>Soares, Helena</creator><general>Mathematical Sciences Publishers (MSP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20180501</creationdate><title>Monads on projective varieties</title><author>Marchesi, Simone ; Macias Marques, Pedro ; Soares, Helena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-a51591de7286a797569ae0bb016c795a8f340e38fcfb41bc46d83f45a2ec2ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebraic geometry</topic><topic>Algebraic varieties</topic><topic>Geometria algebraica</topic><topic>Varietats algebraiques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchesi, Simone</creatorcontrib><creatorcontrib>Macias Marques, Pedro</creatorcontrib><creatorcontrib>Soares, Helena</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Pacific journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchesi, Simone</au><au>Macias Marques, Pedro</au><au>Soares, Helena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monads on projective varieties</atitle><jtitle>Pacific journal of mathematics</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>296</volume><issue>1</issue><spage>155</spage><epage>180</epage><pages>155-180</pages><issn>0030-8730</issn><eissn>0030-8730</eissn><abstract>We generalize Fløystad's theorem on the existence of monads on projectivespace to a larger set of projective varieties. We consider a varietyX, a linebundleLonX, and a basepoint-free linear system of sections ofLgiving amorphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM) or linearly normal and not contained in a quadric. Wegive necessary and sufficient conditions on integersa,bandcfor a monadof type $mathbf{0} rightarrowleft(boldsymbol{L}^{vee}right)^{a} rightarrow mathcal{O}_{X}^{b} rightarrow boldsymbol{L}^{c} rightarrow mathbf{0}$ to exist. We show that under certain conditions there exists a monad whosecohomology sheaf is simple. We furthermore characterize low-rank vectorbundles that are the cohomology sheaf of some monad as above.Finally, we obtain an irreducible family of monads over projective spaceand make a description on how the same method could be used on an ACMsmooth projective varietyX. We establish the existence of a coarse modulispace of low-rank vector bundles over an odd-dimensionalXand show thatin one case this moduli space is irreducible.</abstract><pub>Mathematical Sciences Publishers (MSP)</pub><doi>10.2140/pjm.2018.296.155</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-8730 |
ispartof | Pacific journal of mathematics, 2018-05, Vol.296 (1), p.155-180 |
issn | 0030-8730 0030-8730 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_363618 |
source | Recercat; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Mathematical Sciences Publishers |
subjects | Algebraic geometry Algebraic varieties Geometria algebraica Varietats algebraiques |
title | Monads on projective varieties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monads%20on%20projective%20varieties&rft.jtitle=Pacific%20journal%20of%20mathematics&rft.au=Marchesi,%20Simone&rft.date=2018-05-01&rft.volume=296&rft.issue=1&rft.spage=155&rft.epage=180&rft.pages=155-180&rft.issn=0030-8730&rft.eissn=0030-8730&rft_id=info:doi/10.2140/pjm.2018.296.155&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_363618%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |