Monads on projective varieties
We generalize Fløystad's theorem on the existence of monads on projectivespace to a larger set of projective varieties. We consider a varietyX, a linebundleLonX, and a basepoint-free linear system of sections ofLgiving amorphism to projective space whose image is either arithmetically Cohen-Mac...
Gespeichert in:
Veröffentlicht in: | Pacific journal of mathematics 2018-05, Vol.296 (1), p.155-180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize Fløystad's theorem on the existence of monads on projectivespace to a larger set of projective varieties. We consider a varietyX, a linebundleLonX, and a basepoint-free linear system of sections ofLgiving amorphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM) or linearly normal and not contained in a quadric. Wegive necessary and sufficient conditions on integersa,bandcfor a monadof type $mathbf{0} rightarrowleft(boldsymbol{L}^{vee}right)^{a} rightarrow mathcal{O}_{X}^{b} rightarrow boldsymbol{L}^{c} rightarrow mathbf{0}$ to exist. We show that under certain conditions there exists a monad whosecohomology sheaf is simple. We furthermore characterize low-rank vectorbundles that are the cohomology sheaf of some monad as above.Finally, we obtain an irreducible family of monads over projective spaceand make a description on how the same method could be used on an ACMsmooth projective varietyX. We establish the existence of a coarse modulispace of low-rank vector bundles over an odd-dimensionalXand show thatin one case this moduli space is irreducible. |
---|---|
ISSN: | 0030-8730 0030-8730 |
DOI: | 10.2140/pjm.2018.296.155 |