Visible-Light Reductive Cyclization of Nonactivated Alkyl Chlorides

Nonactivated alkyl chlorides are readily available and bench-stable feedstocks; however, they exhibit an inherent chemical inertness, in part, due to their large negative reduction potentials, which have precluded their widespread use as radical precursors in visible-light photocatalysis. Herein, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Claros, Miguel, Casitas, Alicia, Lloret-Fillol, Julio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonactivated alkyl chlorides are readily available and bench-stable feedstocks; however, they exhibit an inherent chemical inertness, in part, due to their large negative reduction potentials, which have precluded their widespread use as radical precursors in visible-light photocatalysis. Herein, we highlight some recent strategies for activating challenging organic halides under light irradiation, with special emphasis in C(sp3)–halide bonds. In this line, a brief summary of the reactivity of Vitamin B12, F430 cofactor and derivatives is required to comprehend the chemistry behind our developed Cu/M (M = Co, Ni) dual catalytic system. Catalyst design has been key for developing a mild and general photoredox methodology for the intramolecular reductive cyclization of nonactivated alkyl chlorides with tethered alkenes. The cleavage of strong C(sp3)–Cl bonds is mediated by a highly nucleophilic low-valent cobalt or nickel intermediate generated by visible-light photoredox reduction employing a copper photosensitizer.