Digitally stained confocal microscopy through deep learning
Specialists have used confocal microscopy in the ex-vivo modality to identify Basal Cell Carcinoma tumors with an overall sensitivity of 96.6% and specificity of 89.2% (Chung et al., 2004). However, this technology hasn’t established yet in the standard clinical practice because most pathologists la...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Text Resource |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Specialists have used confocal microscopy in the ex-vivo modality to identify Basal Cell Carcinoma tumors with an overall sensitivity of 96.6% and specificity of 89.2% (Chung et al., 2004). However, this technology hasn’t established yet in the standard clinical practice because most pathologists lack the knowledge to interpret its output. In this paper we propose a combination of deep learning and computer vision techniques to digitally stain confocal microscopy images into H&E-like slides, enabling pathologists to interpret these images without specific training. We use a fully convolutional neural network with a multiplicative residual connection to denoise the confocal microscopy images, and then stain them using a Cycle Consistency Generative Adversarial Network
Peer Reviewed |
---|---|
ISSN: | 2640-3498 |