Digitally stained confocal microscopy through deep learning

Specialists have used confocal microscopy in the ex-vivo modality to identify Basal Cell Carcinoma tumors with an overall sensitivity of 96.6% and specificity of 89.2% (Chung et al., 2004). However, this technology hasn’t established yet in the standard clinical practice because most pathologists la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Combalia Escudero, Marc, Pérez Ankar, Javiera, García Herrera, Adriana, Alos, Llúcia, Vilaplana Besler, Verónica, Marqués Acosta, Fernando, Puig, Susana, Malvehy, Josep
Format: Text Resource
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Specialists have used confocal microscopy in the ex-vivo modality to identify Basal Cell Carcinoma tumors with an overall sensitivity of 96.6% and specificity of 89.2% (Chung et al., 2004). However, this technology hasn’t established yet in the standard clinical practice because most pathologists lack the knowledge to interpret its output. In this paper we propose a combination of deep learning and computer vision techniques to digitally stain confocal microscopy images into H&E-like slides, enabling pathologists to interpret these images without specific training. We use a fully convolutional neural network with a multiplicative residual connection to denoise the confocal microscopy images, and then stain them using a Cycle Consistency Generative Adversarial Network Peer Reviewed
ISSN:2640-3498