The lid-driven right-angled isosceles triangular cavity flow

We employ lattice Boltzmann simulation to numerically investigate the two-dimensional incompressible flow inside a right-angled isosceles triangular enclosure driven by the tangential motion of its hypotenuse. While the base flow, directly evolved from creeping flow at vanishing Reynolds number, rem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-09, Vol.875, p.476-519
Hauptverfasser: An, B., Bergada, J. M., Mellibovsky, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We employ lattice Boltzmann simulation to numerically investigate the two-dimensional incompressible flow inside a right-angled isosceles triangular enclosure driven by the tangential motion of its hypotenuse. While the base flow, directly evolved from creeping flow at vanishing Reynolds number, remains stationary and stable for flow regimes beyond $Re\gtrsim 13\,400$ , chaotic motion is nevertheless observed from as low as $Re\simeq 10\,600$ . Chaotic dynamics is shown to arise from the destabilisation, following a variant of the classic Ruelle–Takens route, of a secondary solution branch that emerges at a relatively low $Re\simeq 4908$ and appears to bear no connection to the base state. We analyse the bifurcation sequence that takes the flow from steady to periodic and then quasi-periodic and show that the invariant torus is finally destroyed in a period-doubling cascade of a phase-locked limit cycle. As a result, a strange attractor arises that induces chaotic dynamics.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2019.512