Structural health monitoring by combining machine learning and dimensionality reduction techniques

Structural Health Monitoring is of major interest in many areas of structural mechanics. This paper presents a new approach based on the combination of dimensionality reduction and data-mining techniques able to differentiate damaged and undamaged regions in a given structure. Indeed, existence, sev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 2019-01, Vol.35 (1)
Hauptverfasser: Quaranta, G., Lopez, E., Abisset-Chavanne, E., Duval, J., Huerta, A., Chinesta, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structural Health Monitoring is of major interest in many areas of structural mechanics. This paper presents a new approach based on the combination of dimensionality reduction and data-mining techniques able to differentiate damaged and undamaged regions in a given structure. Indeed, existence, severity (size) and location of damage can be efficiently estimated from collected data at some locations from which the fields of interest are completed before the analysis based on machine learning and dimensionality reduction techniques proceed. Peer Reviewed
ISSN:0213-1315
1886-158X
1886-158X
DOI:10.23967/j.rimni.2018.12.001