Decay rates of Saint-Venant type for functionally graded heat-conducting materials
This paper investigates decay rates for the spatial behaviour of solutions for functionally graded heat-conducting materials. From a mathematical point of view, we obtain a new inequality of Poincaré type. This new result allows us to give new decay rates for functionally graded materials when the i...
Gespeichert in:
Veröffentlicht in: | International journal of engineering science 2019-06, Vol.139, p.24-41 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | |
container_start_page | 24 |
container_title | International journal of engineering science |
container_volume | 139 |
creator | Leseduarte, M.C. Quintanilla, R. |
description | This paper investigates decay rates for the spatial behaviour of solutions for functionally graded heat-conducting materials. From a mathematical point of view, we obtain a new inequality of Poincaré type. This new result allows us to give new decay rates for functionally graded materials when the inhomogeneity depends on the radial variable and the axial variable of the cylinder. The case when the cross-section is increasing is also considered. Besides, we propose to obtain estimates for the case of mixtures. Some pictures illustrate our estimates. |
doi_str_mv | 10.1016/j.ijengsci.2019.03.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_352482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722517325910</els_id><sourcerecordid>2230663149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-79ecf7346c5eb9ca44a6cc95fc4752ecbe925a5bcfb5e97ab1e527ac7b818f453</originalsourceid><addsrcrecordid>eNqFUF2LFDEQDKLgeudfkIDPM5ePyWTzppzeeXAgeOpryPR01gx7yZpkhP33ZtkTH--hKZquKrqKkHec9Zzx8Wrpw4JxVyD0gnHTM9kzxl-QDd9q0wlu9EuyYUywTguhXpM3pSyMMSWN2ZBvnxDckWZXsdDk6YMLsXY_MbpYaT0ekPqUqV8j1JCi2--PdJfdjDP9ha52kOK8tlPc0cdmkYPbl0vyyjfAt094QX7cfP5-_aW7_3p7d_3xvoNBstppg-C1HEZQOBlww-BGAKM8DFoJhAmNUE5N4CeFRruJoxLagZ62fOsHJS8IP_tCWcFmBMzgqk0u_F9OI5gWVioxbEXTvD9rDjn9XrFUu6Q1t1zFCiHZOEo-mMYan5xzKiWjt4ccHl0-Ws7sqXO72H-d21PnlknbOm_CD2chttx_AmbbGBgB59BeqnZO4TmLvx5Ejww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230663149</pqid></control><display><type>article</type><title>Decay rates of Saint-Venant type for functionally graded heat-conducting materials</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Recercat</source><creator>Leseduarte, M.C. ; Quintanilla, R.</creator><creatorcontrib>Leseduarte, M.C. ; Quintanilla, R.</creatorcontrib><description>This paper investigates decay rates for the spatial behaviour of solutions for functionally graded heat-conducting materials. From a mathematical point of view, we obtain a new inequality of Poincaré type. This new result allows us to give new decay rates for functionally graded materials when the inhomogeneity depends on the radial variable and the axial variable of the cylinder. The case when the cross-section is increasing is also considered. Besides, we propose to obtain estimates for the case of mixtures. Some pictures illustrate our estimates.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2019.03.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>35 Partial differential equations ; 35J Partial differential equations of elliptic type ; 80 Classical thermodynamics, heat transfer ; 80A Thermodynamics and heat transfer ; Boundary conditions ; Calor ; Classificació AMS ; Conducció ; Conduction ; Cylinders ; Decay rate ; Differential equations, Partial ; Equacions diferencials parcials ; Functionally graded materials ; Functionally gradient materials ; Heat ; Heat conduction ; Heat conductivity ; Heat transfer ; Heat transmission ; Inhomogeneity ; Matemàtica aplicada a les ciències ; Matemàtiques i estadística ; Mathematical analysis ; Pictures ; Spatial decay estimates ; Àrees temàtiques de la UPC</subject><ispartof>International journal of engineering science, 2019-06, Vol.139, p.24-41</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2019</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-79ecf7346c5eb9ca44a6cc95fc4752ecbe925a5bcfb5e97ab1e527ac7b818f453</citedby><cites>FETCH-LOGICAL-c430t-79ecf7346c5eb9ca44a6cc95fc4752ecbe925a5bcfb5e97ab1e527ac7b818f453</cites><orcidid>0000-0001-7059-7058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijengsci.2019.03.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,26973,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Leseduarte, M.C.</creatorcontrib><creatorcontrib>Quintanilla, R.</creatorcontrib><title>Decay rates of Saint-Venant type for functionally graded heat-conducting materials</title><title>International journal of engineering science</title><description>This paper investigates decay rates for the spatial behaviour of solutions for functionally graded heat-conducting materials. From a mathematical point of view, we obtain a new inequality of Poincaré type. This new result allows us to give new decay rates for functionally graded materials when the inhomogeneity depends on the radial variable and the axial variable of the cylinder. The case when the cross-section is increasing is also considered. Besides, we propose to obtain estimates for the case of mixtures. Some pictures illustrate our estimates.</description><subject>35 Partial differential equations</subject><subject>35J Partial differential equations of elliptic type</subject><subject>80 Classical thermodynamics, heat transfer</subject><subject>80A Thermodynamics and heat transfer</subject><subject>Boundary conditions</subject><subject>Calor</subject><subject>Classificació AMS</subject><subject>Conducció</subject><subject>Conduction</subject><subject>Cylinders</subject><subject>Decay rate</subject><subject>Differential equations, Partial</subject><subject>Equacions diferencials parcials</subject><subject>Functionally graded materials</subject><subject>Functionally gradient materials</subject><subject>Heat</subject><subject>Heat conduction</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Inhomogeneity</subject><subject>Matemàtica aplicada a les ciències</subject><subject>Matemàtiques i estadística</subject><subject>Mathematical analysis</subject><subject>Pictures</subject><subject>Spatial decay estimates</subject><subject>Àrees temàtiques de la UPC</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFUF2LFDEQDKLgeudfkIDPM5ePyWTzppzeeXAgeOpryPR01gx7yZpkhP33ZtkTH--hKZquKrqKkHec9Zzx8Wrpw4JxVyD0gnHTM9kzxl-QDd9q0wlu9EuyYUywTguhXpM3pSyMMSWN2ZBvnxDckWZXsdDk6YMLsXY_MbpYaT0ekPqUqV8j1JCi2--PdJfdjDP9ha52kOK8tlPc0cdmkYPbl0vyyjfAt094QX7cfP5-_aW7_3p7d_3xvoNBstppg-C1HEZQOBlww-BGAKM8DFoJhAmNUE5N4CeFRruJoxLagZ62fOsHJS8IP_tCWcFmBMzgqk0u_F9OI5gWVioxbEXTvD9rDjn9XrFUu6Q1t1zFCiHZOEo-mMYan5xzKiWjt4ccHl0-Ws7sqXO72H-d21PnlknbOm_CD2chttx_AmbbGBgB59BeqnZO4TmLvx5Ejww</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Leseduarte, M.C.</creator><creator>Quintanilla, R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0001-7059-7058</orcidid></search><sort><creationdate>201906</creationdate><title>Decay rates of Saint-Venant type for functionally graded heat-conducting materials</title><author>Leseduarte, M.C. ; Quintanilla, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-79ecf7346c5eb9ca44a6cc95fc4752ecbe925a5bcfb5e97ab1e527ac7b818f453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>35 Partial differential equations</topic><topic>35J Partial differential equations of elliptic type</topic><topic>80 Classical thermodynamics, heat transfer</topic><topic>80A Thermodynamics and heat transfer</topic><topic>Boundary conditions</topic><topic>Calor</topic><topic>Classificació AMS</topic><topic>Conducció</topic><topic>Conduction</topic><topic>Cylinders</topic><topic>Decay rate</topic><topic>Differential equations, Partial</topic><topic>Equacions diferencials parcials</topic><topic>Functionally graded materials</topic><topic>Functionally gradient materials</topic><topic>Heat</topic><topic>Heat conduction</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Inhomogeneity</topic><topic>Matemàtica aplicada a les ciències</topic><topic>Matemàtiques i estadística</topic><topic>Mathematical analysis</topic><topic>Pictures</topic><topic>Spatial decay estimates</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leseduarte, M.C.</creatorcontrib><creatorcontrib>Quintanilla, R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Recercat</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leseduarte, M.C.</au><au>Quintanilla, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decay rates of Saint-Venant type for functionally graded heat-conducting materials</atitle><jtitle>International journal of engineering science</jtitle><date>2019-06</date><risdate>2019</risdate><volume>139</volume><spage>24</spage><epage>41</epage><pages>24-41</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><abstract>This paper investigates decay rates for the spatial behaviour of solutions for functionally graded heat-conducting materials. From a mathematical point of view, we obtain a new inequality of Poincaré type. This new result allows us to give new decay rates for functionally graded materials when the inhomogeneity depends on the radial variable and the axial variable of the cylinder. The case when the cross-section is increasing is also considered. Besides, we propose to obtain estimates for the case of mixtures. Some pictures illustrate our estimates.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2019.03.001</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7059-7058</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7225 |
ispartof | International journal of engineering science, 2019-06, Vol.139, p.24-41 |
issn | 0020-7225 1879-2197 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_352482 |
source | ScienceDirect Journals (5 years ago - present); Recercat |
subjects | 35 Partial differential equations 35J Partial differential equations of elliptic type 80 Classical thermodynamics, heat transfer 80A Thermodynamics and heat transfer Boundary conditions Calor Classificació AMS Conducció Conduction Cylinders Decay rate Differential equations, Partial Equacions diferencials parcials Functionally graded materials Functionally gradient materials Heat Heat conduction Heat conductivity Heat transfer Heat transmission Inhomogeneity Matemàtica aplicada a les ciències Matemàtiques i estadística Mathematical analysis Pictures Spatial decay estimates Àrees temàtiques de la UPC |
title | Decay rates of Saint-Venant type for functionally graded heat-conducting materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decay%20rates%20of%20Saint-Venant%20type%20for%20functionally%20graded%20heat-conducting%20materials&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Leseduarte,%20M.C.&rft.date=2019-06&rft.volume=139&rft.spage=24&rft.epage=41&rft.pages=24-41&rft.issn=0020-7225&rft.eissn=1879-2197&rft_id=info:doi/10.1016/j.ijengsci.2019.03.001&rft_dat=%3Cproquest_csuc_%3E2230663149%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230663149&rft_id=info:pmid/&rft_els_id=S0020722517325910&rfr_iscdi=true |