Decay rates of Saint-Venant type for functionally graded heat-conducting materials

This paper investigates decay rates for the spatial behaviour of solutions for functionally graded heat-conducting materials. From a mathematical point of view, we obtain a new inequality of Poincaré type. This new result allows us to give new decay rates for functionally graded materials when the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2019-06, Vol.139, p.24-41
Hauptverfasser: Leseduarte, M.C., Quintanilla, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue
container_start_page 24
container_title International journal of engineering science
container_volume 139
creator Leseduarte, M.C.
Quintanilla, R.
description This paper investigates decay rates for the spatial behaviour of solutions for functionally graded heat-conducting materials. From a mathematical point of view, we obtain a new inequality of Poincaré type. This new result allows us to give new decay rates for functionally graded materials when the inhomogeneity depends on the radial variable and the axial variable of the cylinder. The case when the cross-section is increasing is also considered. Besides, we propose to obtain estimates for the case of mixtures. Some pictures illustrate our estimates.
doi_str_mv 10.1016/j.ijengsci.2019.03.001
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_352482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722517325910</els_id><sourcerecordid>2230663149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-79ecf7346c5eb9ca44a6cc95fc4752ecbe925a5bcfb5e97ab1e527ac7b818f453</originalsourceid><addsrcrecordid>eNqFUF2LFDEQDKLgeudfkIDPM5ePyWTzppzeeXAgeOpryPR01gx7yZpkhP33ZtkTH--hKZquKrqKkHec9Zzx8Wrpw4JxVyD0gnHTM9kzxl-QDd9q0wlu9EuyYUywTguhXpM3pSyMMSWN2ZBvnxDckWZXsdDk6YMLsXY_MbpYaT0ekPqUqV8j1JCi2--PdJfdjDP9ha52kOK8tlPc0cdmkYPbl0vyyjfAt094QX7cfP5-_aW7_3p7d_3xvoNBstppg-C1HEZQOBlww-BGAKM8DFoJhAmNUE5N4CeFRruJoxLagZ62fOsHJS8IP_tCWcFmBMzgqk0u_F9OI5gWVioxbEXTvD9rDjn9XrFUu6Q1t1zFCiHZOEo-mMYan5xzKiWjt4ccHl0-Ws7sqXO72H-d21PnlknbOm_CD2chttx_AmbbGBgB59BeqnZO4TmLvx5Ejww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230663149</pqid></control><display><type>article</type><title>Decay rates of Saint-Venant type for functionally graded heat-conducting materials</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Recercat</source><creator>Leseduarte, M.C. ; Quintanilla, R.</creator><creatorcontrib>Leseduarte, M.C. ; Quintanilla, R.</creatorcontrib><description>This paper investigates decay rates for the spatial behaviour of solutions for functionally graded heat-conducting materials. From a mathematical point of view, we obtain a new inequality of Poincaré type. This new result allows us to give new decay rates for functionally graded materials when the inhomogeneity depends on the radial variable and the axial variable of the cylinder. The case when the cross-section is increasing is also considered. Besides, we propose to obtain estimates for the case of mixtures. Some pictures illustrate our estimates.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2019.03.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>35 Partial differential equations ; 35J Partial differential equations of elliptic type ; 80 Classical thermodynamics, heat transfer ; 80A Thermodynamics and heat transfer ; Boundary conditions ; Calor ; Classificació AMS ; Conducció ; Conduction ; Cylinders ; Decay rate ; Differential equations, Partial ; Equacions diferencials parcials ; Functionally graded materials ; Functionally gradient materials ; Heat ; Heat conduction ; Heat conductivity ; Heat transfer ; Heat transmission ; Inhomogeneity ; Matemàtica aplicada a les ciències ; Matemàtiques i estadística ; Mathematical analysis ; Pictures ; Spatial decay estimates ; Àrees temàtiques de la UPC</subject><ispartof>International journal of engineering science, 2019-06, Vol.139, p.24-41</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2019</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-79ecf7346c5eb9ca44a6cc95fc4752ecbe925a5bcfb5e97ab1e527ac7b818f453</citedby><cites>FETCH-LOGICAL-c430t-79ecf7346c5eb9ca44a6cc95fc4752ecbe925a5bcfb5e97ab1e527ac7b818f453</cites><orcidid>0000-0001-7059-7058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijengsci.2019.03.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,26973,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Leseduarte, M.C.</creatorcontrib><creatorcontrib>Quintanilla, R.</creatorcontrib><title>Decay rates of Saint-Venant type for functionally graded heat-conducting materials</title><title>International journal of engineering science</title><description>This paper investigates decay rates for the spatial behaviour of solutions for functionally graded heat-conducting materials. From a mathematical point of view, we obtain a new inequality of Poincaré type. This new result allows us to give new decay rates for functionally graded materials when the inhomogeneity depends on the radial variable and the axial variable of the cylinder. The case when the cross-section is increasing is also considered. Besides, we propose to obtain estimates for the case of mixtures. Some pictures illustrate our estimates.</description><subject>35 Partial differential equations</subject><subject>35J Partial differential equations of elliptic type</subject><subject>80 Classical thermodynamics, heat transfer</subject><subject>80A Thermodynamics and heat transfer</subject><subject>Boundary conditions</subject><subject>Calor</subject><subject>Classificació AMS</subject><subject>Conducció</subject><subject>Conduction</subject><subject>Cylinders</subject><subject>Decay rate</subject><subject>Differential equations, Partial</subject><subject>Equacions diferencials parcials</subject><subject>Functionally graded materials</subject><subject>Functionally gradient materials</subject><subject>Heat</subject><subject>Heat conduction</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Inhomogeneity</subject><subject>Matemàtica aplicada a les ciències</subject><subject>Matemàtiques i estadística</subject><subject>Mathematical analysis</subject><subject>Pictures</subject><subject>Spatial decay estimates</subject><subject>Àrees temàtiques de la UPC</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFUF2LFDEQDKLgeudfkIDPM5ePyWTzppzeeXAgeOpryPR01gx7yZpkhP33ZtkTH--hKZquKrqKkHec9Zzx8Wrpw4JxVyD0gnHTM9kzxl-QDd9q0wlu9EuyYUywTguhXpM3pSyMMSWN2ZBvnxDckWZXsdDk6YMLsXY_MbpYaT0ekPqUqV8j1JCi2--PdJfdjDP9ha52kOK8tlPc0cdmkYPbl0vyyjfAt094QX7cfP5-_aW7_3p7d_3xvoNBstppg-C1HEZQOBlww-BGAKM8DFoJhAmNUE5N4CeFRruJoxLagZ62fOsHJS8IP_tCWcFmBMzgqk0u_F9OI5gWVioxbEXTvD9rDjn9XrFUu6Q1t1zFCiHZOEo-mMYan5xzKiWjt4ccHl0-Ws7sqXO72H-d21PnlknbOm_CD2chttx_AmbbGBgB59BeqnZO4TmLvx5Ejww</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Leseduarte, M.C.</creator><creator>Quintanilla, R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0001-7059-7058</orcidid></search><sort><creationdate>201906</creationdate><title>Decay rates of Saint-Venant type for functionally graded heat-conducting materials</title><author>Leseduarte, M.C. ; Quintanilla, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-79ecf7346c5eb9ca44a6cc95fc4752ecbe925a5bcfb5e97ab1e527ac7b818f453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>35 Partial differential equations</topic><topic>35J Partial differential equations of elliptic type</topic><topic>80 Classical thermodynamics, heat transfer</topic><topic>80A Thermodynamics and heat transfer</topic><topic>Boundary conditions</topic><topic>Calor</topic><topic>Classificació AMS</topic><topic>Conducció</topic><topic>Conduction</topic><topic>Cylinders</topic><topic>Decay rate</topic><topic>Differential equations, Partial</topic><topic>Equacions diferencials parcials</topic><topic>Functionally graded materials</topic><topic>Functionally gradient materials</topic><topic>Heat</topic><topic>Heat conduction</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Inhomogeneity</topic><topic>Matemàtica aplicada a les ciències</topic><topic>Matemàtiques i estadística</topic><topic>Mathematical analysis</topic><topic>Pictures</topic><topic>Spatial decay estimates</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leseduarte, M.C.</creatorcontrib><creatorcontrib>Quintanilla, R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Recercat</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leseduarte, M.C.</au><au>Quintanilla, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decay rates of Saint-Venant type for functionally graded heat-conducting materials</atitle><jtitle>International journal of engineering science</jtitle><date>2019-06</date><risdate>2019</risdate><volume>139</volume><spage>24</spage><epage>41</epage><pages>24-41</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><abstract>This paper investigates decay rates for the spatial behaviour of solutions for functionally graded heat-conducting materials. From a mathematical point of view, we obtain a new inequality of Poincaré type. This new result allows us to give new decay rates for functionally graded materials when the inhomogeneity depends on the radial variable and the axial variable of the cylinder. The case when the cross-section is increasing is also considered. Besides, we propose to obtain estimates for the case of mixtures. Some pictures illustrate our estimates.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2019.03.001</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7059-7058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7225
ispartof International journal of engineering science, 2019-06, Vol.139, p.24-41
issn 0020-7225
1879-2197
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_352482
source ScienceDirect Journals (5 years ago - present); Recercat
subjects 35 Partial differential equations
35J Partial differential equations of elliptic type
80 Classical thermodynamics, heat transfer
80A Thermodynamics and heat transfer
Boundary conditions
Calor
Classificació AMS
Conducció
Conduction
Cylinders
Decay rate
Differential equations, Partial
Equacions diferencials parcials
Functionally graded materials
Functionally gradient materials
Heat
Heat conduction
Heat conductivity
Heat transfer
Heat transmission
Inhomogeneity
Matemàtica aplicada a les ciències
Matemàtiques i estadística
Mathematical analysis
Pictures
Spatial decay estimates
Àrees temàtiques de la UPC
title Decay rates of Saint-Venant type for functionally graded heat-conducting materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decay%20rates%20of%20Saint-Venant%20type%20for%20functionally%20graded%20heat-conducting%20materials&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Leseduarte,%20M.C.&rft.date=2019-06&rft.volume=139&rft.spage=24&rft.epage=41&rft.pages=24-41&rft.issn=0020-7225&rft.eissn=1879-2197&rft_id=info:doi/10.1016/j.ijengsci.2019.03.001&rft_dat=%3Cproquest_csuc_%3E2230663149%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230663149&rft_id=info:pmid/&rft_els_id=S0020722517325910&rfr_iscdi=true