Decay rates of Saint-Venant type for functionally graded heat-conducting materials

This paper investigates decay rates for the spatial behaviour of solutions for functionally graded heat-conducting materials. From a mathematical point of view, we obtain a new inequality of Poincaré type. This new result allows us to give new decay rates for functionally graded materials when the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2019-06, Vol.139, p.24-41
Hauptverfasser: Leseduarte, M.C., Quintanilla, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates decay rates for the spatial behaviour of solutions for functionally graded heat-conducting materials. From a mathematical point of view, we obtain a new inequality of Poincaré type. This new result allows us to give new decay rates for functionally graded materials when the inhomogeneity depends on the radial variable and the axial variable of the cylinder. The case when the cross-section is increasing is also considered. Besides, we propose to obtain estimates for the case of mixtures. Some pictures illustrate our estimates.
ISSN:0020-7225
1879-2197
DOI:10.1016/j.ijengsci.2019.03.001